Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(45): 31935-31947, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37920194

RESUMO

We prepared cellulose microfibrils-g-hydroxyapatite (CMFs-g-HAPN (8%)) in a granular form. We evaluated the ability of these granules to eliminate Pb(ii) and Cu(ii) ions from aqueous solution in dynamic mode using a fixed-bed adsorption column. Several operating parameters (inlet ion concentration, feed flow rate, bed height) were optimized using response surface methodology (RSM) based on a Doehlert design. Based on ANOVA and regression analyses, adsorption was found to follow the quadratic polynomial model with p < 0.005, R2 = 0.976, and R2 = 0.990, respectively, for Pb(ii) and Cu(ii) ions. Moreover, three kinetic models (Adams-Bohart, Thomas, Yoon-Nelson) were applied to fit our experimental data. The Thomas model and Yoon-Nelson model represented appropriately the whole breakthrough curves. The Adams-Bohart model was suitable only for fitting the initial part of the same curves. Our adsorbent exhibited high selectivity towards Pb(ii) over Cu(ii) ions in the binary metal system, with a maximum predicted adsorption capacity of 59.59 ± 3.37 and 35.66 ± 1.34 mg g-1, respectively. Under optimal conditions, multi-cycle sorption-desorption experiments indicated that the prepared adsorbent could be regenerated and reused up to four successive cycles. The prepared CMFs-g-HAPN was an efficient and effective reusable adsorbent for removal of heavy metals from aqueous systems, and could be a suitable candidate for wastewater treatment on a large scale.

2.
Int J Biol Macromol ; 253(Pt 5): 127229, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37802458

RESUMO

The main challenge facing agriculture today is water scarcity. At present, agriculture consumes around 70 % of the planet's freshwater, much of which is lost through evaporation, leaching and runoff. This wastage, combined with the increased frequency and severity of droughts linked to climate change, is having a considerable negative impact on crops. As a result, the food security of people living in regions with limited water resources is threatened. In this regard, efficient water management using water-saving materials and soil additives such as superabsorbent polymers (SAPs) are recognized as an effective strategy to boost water use efficiency by plants and improve agricultural productivity. The present study fits with this strategy and aims to investigate the effect of new sodium alginate-based hydrogel-treated sandy loam soil on seed emergence and growth of tomatoes as a crop model under different water-deficit stress levels. A set of pot experiments was conducted in a greenhouse chamber using sandy loam soil amended with two levels of hydrogel (0.1 % and 0.5 % by weight) along with untreated control, all under water-deficit stress at three levels: 30 % of the daily amount of required irrigation water (DARW) for different growing cycles (severe stress), 70 % DARW (mild stress), and 100 % DARW (normal irrigation conditions). The germination test showed the absence of phytotoxicity of the developed hydrogel and confirmed its suitability in protecting seedlings from drought stress. Greenhouse experiment results demonstrated that water stress and levels of applied hydrogel significantly (P < 0.05) affected plant growth parameters such as plant height, stem diameter, number of leaves, chlorophyll content, fresh weight, and dry weight compared with the treatments without SAPs. The developed sodium alginate-based SAPs showed relevant agronomical benefits under drought stress by retaining more water and nutrients, thus it had the potential to be used in agriculture for better water management along with significant environmental benefits.


Assuntos
Solanum lycopersicum , Humanos , Hidrogéis/farmacologia , Alginatos/farmacologia , Agricultura , Solo , Secas
3.
Environ Sci Pollut Res Int ; 30(37): 86773-86789, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37410326

RESUMO

As the demand for sustainable energy sources expands, the production of biodiesel has attracted great attention. The development of effective and ecologically friendly biodiesel catalysts has become an urgent need. In this context, the goal of this study is to develop a composite solid catalyst with enhanced efficiency, reusability, and reduced environmental impact. For that, eco-friendly, and reusable composite solid catalysts have been designed by impregnating different amounts of zinc aluminate into a zeolite matrix (ZnAl2O4@Zeolite). Structural and morphological characterizations confirmed the successful impregnation of zinc aluminate into the zeolite porous structure. Catalytic experiments revealed that the catalyst containing 15 wt% ZnAl2O4 showed the highest conversion activity of fatty acid methyl esters (FAME) of 99% under optimized reaction conditions, including 8 wt% catalyst, a molar ratio of 10:1 methanol to oil, a temperature of 100 °C, and 3 h of reaction time. The developed catalyst demonstrated high thermal and chemical stability, maintaining good catalytic activity even after five cycles. Furthermore, the produced biodiesel quality assessment has demonstrated good properties in compliance with the criteria of the American Society for Testing and Materials ASTM-D6751 and the European Standard EN14214. Overall, the findings of this study could have a significant impact on the commercial production of biodiesel by offering an efficient and environmentally friendly reusable catalyst, ultimately reducing the cost of biodiesel production.


Assuntos
Biocombustíveis , Zeolitas , Esterificação , Óleos de Plantas/química , Ácidos Graxos , Catálise , Zinco
4.
RSC Adv ; 13(28): 19617-19626, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37388148

RESUMO

Water contamination by pesticides is a critical environmental issue, necessitating the development of sustainable and efficient degradation methods. This study focuses on synthesizing and evaluating a novel heterogeneous sonocatalyst for degrading pesticide methidathion. The catalyst consists of graphene oxide (GO) decorated CuFe2O4@SiO2 nanocomposites. Comprehensive characterization using various techniques confirmed the superior sonocatalytic activity of the CuFe2O4@SiO2-GOCOOH nanocomposite compared to CuFe2O4@SiO2 alone. The enhanced performance is attributed to the combined effects of GO and CuFe2O4@SiO2, including increased surface area, enhanced adsorption capabilities, and efficient electron transfer pathways. Reaction parameters such as time, temperature, concentration, and pH significantly influenced the degradation efficiency of methidathion. Longer reaction times, higher temperatures, and lower initial pesticide concentrations favored faster degradation and higher efficiency. Optimal pH conditions were identified to ensure effective degradation. Remarkably, the catalyst demonstrated excellent recyclability, indicating its potential for practical implementation in pesticide-contaminated wastewater treatment. This research contributes to the development of sustainable methods for environmental remediation, highlighting the promising potential of the graphene oxide decorated CuFe2O4@SiO2 nanocomposite as an effective heterogeneous sonocatalyst for pesticide degradation.

5.
BMC Chem ; 14(1): 6, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32025664

RESUMO

In the present study, we report the synthesis of various quinoxaline derivatives from direct condensation of substituted aromatic 1,2-diamine with 1,2-dicarbonyl catalyzed by nanostructured pyrophosphate Na2PdP2O7 as a new highly efficient bifunctionalheterogeneous catalyst. The quinoxaline synthesis was performed in ethanol as a green and suitable solvent at ambient temperature to afford the desired quinoxalines with good to excellent yields in shorter reaction times. Many Quinoxaline derivatives were successfully synthesized using various 1,2-diketones and 1,2-diamines at room temperature. Catalyst reusability showed that the Na2PdP2O7 catalyst exhibited excellent recyclability without significant loss in its catalytic activity after five consecutive cycles.

6.
RSC Adv ; 10(42): 24941-24950, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35517480

RESUMO

This study focuses on the design of highly hydrophobic polyester fabrics (PET) coated with organophilic graphene nanosheets (G-ODA) through a simple, cost-effective and scalable coating method. The organophilic graphene oxide was successfully synthesized by covalently grafting a long chain fatty amine on its surface and was fully characterized by various physicochemical techniques. G-ODA was coated at different loadings onto the PET fabric ranging from 1 to 7 wt% to produce uniformly dispersed PET@G-ODA fabrics with multifunctional performances. FTIR has confirmed the formation of strong interfacial interaction between the PET and G-ODA functional groups. Moreover, the produced PET@G-ODA fabrics resulted in achieving enhanced thermal stability as well as excellent water repellency compared to the pristine PET. Water contact angle measurements showed a tremendous enhancement of surface hydrophobicity up to 148° with 7 wt% loading of G-ODA. Tensile strength tests revealed that our fabric exhibited excellent mechanical properties compared to neat PET. In addition, the designed PET@G-ODA fabrics demonstrated excellent oil/water separation efficiency for different oil/water mixtures. The obtained results are very promising in terms of designing and producing functional PET fabrics with improved thermal and surface proprieties.

7.
RSC Adv ; 9(25): 14132-14142, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35519325

RESUMO

Copper incorporated apatite (Cu-apatite) nanomaterial was prepared by a co-precipitation method. The obtained material was characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) and Raman spectroscopy, scanning electron microscopy (SEM, STEM) and nitrogen adsorption-desorption. The as-prepared Cu-apatite was used to catalyze phenol hydroxylation with hydrogen peroxide as an oxidant. The influencing parameters including reaction time, temperature, H2O2/phenol ratio and catalyst mass have been investigated. Under the optimized conditions, the Cu-apatite catalyst gave a phenol conversion of 64% with 95% selectivity to dihydroxybenzenes. More importantly, the results of catalyst recycling indicated that the same catalytic performance has been obtained after four cycles with a slight loss of activity and selectivity.

8.
RSC Adv ; 9(62): 36471-36478, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-35540585

RESUMO

N-Arylation of imidazole was carried out with various arylboronic acids on iron oxide encapsulated by copper-apatite (Fe3O4@Cu-apatite), producing excellent yields. Firstly, the iron nanoparticles were prepared using a solvothermal method, and then they were encapsulated by copper-apatite to obtain magnetic Fe3O4@Cu-apatite nanocatalysts. Several physico-chemical analysis techniques were used to characterize the prepared nanostructured Fe3O4@Cu-apatite catalyst. The prepared Fe3O4@Cu-apatite was used as a nanocatalyst for N-arylation of imidazole with a series of arylboronic acids with different substituents to reaffirm the effectiveness of this magnetic nanocatalyst. The Fe3O4@Cu-apatite nanocatalyst can also be easily separated from the reaction mixture using an external magnet. More importantly, the as-prepared Fe3O4@Cu-apatite exhibited good reusability and stability properties in successive cycles. However, there was a notable loss of its catalytic activity after multiple cycles.

9.
RSC Adv ; 9(65): 37858-37869, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-35541804

RESUMO

Environment-friendly composite hydrogel beads based on carboxymethyl cellulose (CMC), alginate (Alg) and graphene oxide (GO) were synthesized by an ionotropic gelation technique and studied as an efficient adsorbent for methylene blue (MB). The chemical structure and surface morphology of the prepared hydrogel beads were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential thermal analysis (DTA) and point of zero charge (pHpzc). A hybrid response surface methodology integrated Box-Behnken design (RSM-BBD) was successfully developed to model, simulate, and optimize the biosorption process. The synergistic effects between three critical independent variables including adsorbent dose (0.3-0.7 g), pH of the MB solution (6.5-9.5) and initial MB concentration (15-45 mg L-1) on the MB adsorption capacity (mg g-1) and removal efficiency (%) were statistically studied and optimized. The performance of the RSM-BBD method was found to be very impressive and efficient. Results proved that the adsorption process follows a polynomial quadratic model since high regression parameters were obtained (R 2-value = 99.8% and adjusted R 2-value = 99.3%). Analysis of variance (ANOVA) further confirms the validity of the suggested model. The optimal conditions for 96.22 ± 2.96% MB removal were predicted to be 0.6 g of CMC-Alg/GO hydrogel beads, MB concentration of 15 mg L-1 and pH of 9.5 within 120 min. The adsorption equilibrium is better described by the Freundlich isotherm, indicating that physisorption is the rate controlling mechanism. The MB adsorption process was thermodynamically spontaneous and endothermic. A reusability study revealed that the prepared adsorbent is readily reusable. The adsorbent still maintains its ability to adsorb MB for up to four cycles. Results reported in this study demonstrated that CMC-Alg/GO hydrogel beads are an effective, promising and recyclable adsorbent for the removal of MB from aqueous solutions.

10.
Nanoscale Adv ; 1(8): 3151-3163, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36133601

RESUMO

In this work, a bifunctional nanohybrid silver/zinc oxide material (Ag/ZnO) has been synthesized by a rapid route using sodium alginate simultaneously as a sacrificial template and silver reducing agent. The obtained samples were characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), solid diffuse reflectance and liquid state UV-visible spectroscopy (DRS, UV-visible), and nitrogen adsorption-desorption analysis (BET-BJH). The XRD patterns showed that the Ag/ZnO sample is composed of a hexagonal zinc oxide structure with cubic metallic silver (Ag°). SEM micrographs exhibited a porous structure which was confirmed by BET-BJH methods to be mesoporous. The Ag/ZnO material was used as a nanocatalyst in the conversion of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) as well as an antibacterial agent against Escherichia coli and Staphylococcus aureus. It was found that an efficient 4-NP reduction to 4-AP in the presence of NaBH4 shows a rate constant of 0.418 min-1 under ultrasonic energy and 0.316 min-1 without ultrasonic energy. Both the catalysis reaction and antibacterial activity analysis were conducted in water solution and showed a synergetic effect of metallic silver loading.

11.
RSC Adv ; 8(3): 1351-1360, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35540914

RESUMO

Herein, we report the preparation of magnetic CoFe2O4 nanoparticles and CoFe2O4/graphene oxide (GO) hybrids and evaluate their catalytic activity as heterogeneous peroxymonosulfate (PMS) activators for the decomposition of rhodamine B. The surface morphologies and structures of both CoFe2O4 nanoparticles and CoFe2O4/GO hybrids were investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and nitrogen adsorption-desorption isotherms. The magnetic properties of the samples were assessed using a SQUID magnetometer at 298 K. Catalytic oxidation experiments demonstrated that CoFe2O4/GO hybrids exhibited much better catalytic activity than CoFe2O4 nanoparticles or CoFe2O4/reduced graphene oxide (rGO) hybrids, suggesting that GO plays an important role in CoFe2O4/GO hybrids in the decomposition of rhodamine B. The influence of various reaction conditions such as temperature, concentration of PMS, pH and decomposition time of rhodamine B over the CoFe2O4/GO catalyst were investigated and optimized. The rhodamine B degradation process was found to fit a pseudo-first order kinetics model. The catalyst could be easily separated from the reaction mixture by applying an external magnet. In particular, the as-prepared CoFe2O4/GO hybrid exhibited good reusability and stability in successive degradation experiments in PMS solution.

12.
RSC Adv ; 8(37): 20737-20747, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35542378

RESUMO

In the present study, we investigate a simple and effective synthetic protocol to produce zinc oxide foams by a facile solution-based method using alginate gelation. The influences of the zinc concentration and the drying process on the structural, textural and morphological properties of the synthesized ZnO nanomaterial were studied and discussed. The components of these nanomaterials were characterized by several techniques to demonstrate the effectiveness of the adopted synthetic route in controlling the growth of the ZnO nanoparticles. XRD analysis revealed that the as-prepared ZnO nanomaterial crystallizes in the hexagonal wurtzite structure. The room temperature photoluminescence (PL) spectra of ZnO show ultra-violet (UV) and visible emissions. SEM analysis revealed the porous texture of the prepared zinc oxide. TEM analysis confirmed the nano dimensions of the synthesized zinc oxide nanoparticles. A comparative study of conventional air drying versus supercritical drying was conducted to determine the influence of each mode of drying on the structural, textural and morphological as well as optical properties of the synthesized ZnO nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...